Physics of Negative Energy Solitons

-- Frontiers in Gravity and Fundamental Physics --YU Workshop 2022 @ Yamagata Nov 27, 2022

Muneto Nitta(新田宗土) Keio U. (慶應義塾大学)

Keio University 1858 CALAMVS GLADIO FORTIOR

Minoru Eto (衛藤稔) Yamagata U. 山形大学 Kentaro Nishimura (西村健太郎) KEK Zebin Qiu Keio U. Also Norisuke Sakai (坂井典佑), Calum Ross U.London

References

Qunatum nucleation of topological solitons M.Eto & MN, JHEP 09 (2022) 077 [2207.00211 [hep-th]]

Non-Abelian chiral soliton lattice in QCD M.Eto, K.Nishimura & MN, JHEP 08 (2022) 305 [2112.01381 [hep-ph]]

Domain wall lattice in chiral magnets C.Ross, N.Sakai, MN, JHEP 12 (2021) 163 [2012.08800 [cond-mat]]]

Skyrmion lattice in chiral magnets C.Ross, N.Sakai, MN, JHEP 02 (2021) 095 [2003.07147 [cond-mat]] Topological solitons(or defects) can have negative energy(tension).

What are physical consequences?

Ground states are solitonic (when they are repulsive)

Solitonic ground states

- 1. Abrikosov lattice in Type-II superconductors under B
- 2. Abrikosov lattice in superfluids under rotation
- 3.) Chiral soliton lattices in chiral magnets
- 4. Skyrmion lattices in chiral magnets Cond-mat examples 5.) Chiral soliton lattices in QCD under

Important for industry

strong magnetic field Son-Stephanov('07), Brauner-Yamamoto ('16) rapid rotation Huang-Nishimura-Yamamoto('17)

Classification of phase transition

deGennes said that there are two kinds of continuous (2nd order) transitions: instability type & nucleation type.

Instability type: ordinary one described by Landau Nucleation type: soliton energy<0, soliton interaction>0(repulsive)

The model at IR (common for chiral magnets & QCD) = sine-Gordon model + topological term (chiral sine-Gordon model)

$$\mathcal{H}_{\rm IR} = v^2 \left[\dot{\theta}^2 + (\nabla \theta)^2 - 2m^2 (\cos \theta - 1) - c \boldsymbol{B} \cdot \nabla \theta \right]$$

topological term Not affecting EOM

The origin of the term

- 1. Dzyaloshinskii–Moriya interaction for chiral magnets
- 2. WZW term for QCD @ finite density under magnetic field or rotation

Chiral sine-Gordon model in QCD [Son-Stephanov('07)]

SU(2) Nambu-Goldstone fields $\Sigma = \exp\left(\frac{i\sigma^a \pi^a}{f_{\pi}}\right)$

Chiral Lagrangian with Wess-Zumino-Witten term $\mathcal{L}_{\chi \mathrm{PT}} = \frac{f_{\pi}^2}{4} \mathrm{Tr} \left[D_{\mu} \Sigma D^{\mu} \Sigma^{\dagger} + m_{\pi}^2 (\Sigma + \Sigma^{\dagger}) \right] + \mathcal{L}_{\mathrm{WZW}}$ $\mathcal{L}_{ ext{WZW}} = -\left(A^{ ext{B}}_{\mu} + rac{1}{2}A^{ ext{EM}}_{\mu} ight)j^{\mu}_{ ext{B}}$ $j_{\rm B}^{\mu} = -\frac{1}{24\pi^2} \epsilon^{\mu\nu\alpha\beta} \left\{ {\rm Tr}L_{\nu}L_{\alpha}L_{\beta} - \frac{3}{2}i\partial_{\nu} \left(A_{\alpha}\sigma^3(L_{\beta} + R_{\beta}) \right) \right\}$

A constant magnetic field A baryon chemical potential Ignore charged pions π^1

$$H = A_{\mu}^{\rm B} = (\mu_{\rm B}, \vec{0})$$
$$A_{\mu}^{\rm I} = -i\pi^2 = 0$$

 $c \neq 0$ no topological term

tension
$$\sigma = 16mv^2 - 2\pi v^2 cB$$

Soliton # Negative contribution

When $B > 8m/\pi c$, tension is negative $\sigma < 0$

Solitons are created (come in) in the ground state, but not infinitely because of repulsion.

 \rightarrow The ground state is a chiral soliton lattice.

How are they created? In condensed matter physics --- usually defect, or at boundary of a finite system.

How about infinite systems?

Topological soliton creation Ours ('22) = Quantum nucleation of a soliton

Is it possible?

$$E = +\pi R^2 T_{wall} + 2\pi R T_{string}$$

$$Possible if T_{wall} < 0$$

Quantum nucleation of topological solitons M.Eto & MN, JHEP 09 (2022) 077 [2207.00211 [hep-th]] Also Higaki, Kamada, Nishimura, 2207.00212 [hep-th]

Nucleation of topological defects in de Sitter space, (string loop, spherical domain wall, monopole-anti-monopole) Basu-Guth-Vilenkin('91), Basu-Vilenkin('92), Garriga-Vilenkin('93), Garriga('94)

False vacuum decay Coleman('77) = Quantum nucleation of a bubble

False vacuum decay Coleman('77) = Quantum nucleation of a bubble

Topological soliton decay Preskill & Vilenkin('93) = Quantum nucleation of a hole

Topological soliton creation Ours ('22) = Quantum nucleation of a soliton

The model at IR (common for chiral magnets & QCD) = sine-Gordon model + topological term

$$\mathcal{L}_{\rm IR} = v^2 \left[(\partial_\mu \theta)^2 + 2m^2 (\cos \theta - 1) + c\mathbf{B} \cdot \nabla \theta \right]$$

$$\mathcal{H}_{\rm IR} = v^2 \left[\dot{\theta}^2 + (\nabla \theta)^2 - 2m^2 (\cos \theta - 1) - c \boldsymbol{B} \cdot \nabla \theta \right]$$

The UV theory = axion (Goldstone) model + topo $\mathcal{L}_{\rm UV} = |\partial_{\mu}\phi|^{2} - \frac{\lambda}{4} \left(|\phi|^{2} - v^{2}\right)^{2} + vm^{2}(\phi + \phi^{*}) + c\mathbf{j} \cdot \mathbf{B}$ $j^{\mu} = -\frac{i}{2}(\phi^{*}\partial^{\mu}\phi - \phi\partial^{\mu}\phi^{*}) = |\phi|^{2}\partial^{\mu}\theta, \qquad \phi = |\phi|e^{i\theta}$

For m = 0 (Goldstone model) Nambu-Goldstone (NG) mode + Higgs mode $m_h = v\sqrt{\lambda}$

Global string $\delta_{\rm st} \sim m_h^{-1}$,

thickness

 $\mu\big|_{m\to 0} \sim \pi v^2 \log(m_h L)$

tension

L: system size (IR cutoff)

For $m \neq 0$, pseudo NG mode We consider $m_h \gg m \quad \Leftrightarrow \quad m^2 \ll \lambda v^2$ For simplicity $m_h \to \infty$ Sine-Gordon(SG) soliton $\theta = 4 \tan^{-1} e^{mz}$ $\delta_{dw} = m^{-1}$, $\sigma|_{\lambda \to \infty} = 16mv^2$ tension thickness

For finite m_h ,

- 1) SG soliton is metastable
- 2) SG-soliton can be bound by a string
- 3) String has a *finite* tension $\mu|_{m>0} = \text{const.}$

Missing in Preskill-Vilenkin

Without the topological term, the decay probability is (Preskill-Vilenkin)

$$P_{\text{decay}} = Ae^{-S}, \qquad S = \frac{16\pi\mu^3}{3\sigma^2}, \qquad R = \frac{2\mu}{\sigma}$$

Nucleation probability with the topological term

$$\tilde{x}^{\mu} = mx, \qquad \tilde{\phi} = v^{-1}\phi, \qquad \tilde{\lambda} = \frac{m_h^2}{m^2}, \qquad \tilde{B} = m^{-1}cB.$$
$$\mathcal{L}_{\rm UV} = m^2 v^2 \left[|\tilde{\partial}_{\mu}\tilde{\phi}|^2 - \frac{\tilde{\lambda}}{4} \left(|\tilde{\phi}|^2 - 1 \right)^2 + \tilde{\phi} + \tilde{\phi}^* + \tilde{j} \cdot \tilde{B} \right]$$

$$\tilde{\boldsymbol{j}} \cdot \tilde{\boldsymbol{B}} = \tilde{B}\tilde{j}_z \cos \alpha$$

α : Angle between soliton and B

<u>2+1 dim</u>

Thin-defect approx

$$S = 2\pi R\mu + \pi R^2 \sigma. \qquad R_0 = \frac{\mu}{-\sigma}, \qquad S_0 = \frac{\pi \mu^2}{-\sigma}$$

Numerical simulation in 2+1 dim: relaxation

Decay prob
Consistent with
$$P_{\text{nucleation}} = A \exp\left(-\alpha_1 \frac{v^2}{m} \times 9.0\right)$$

<u>3+1 dim</u>

Thin-defect approx

Numerical simulation in 3+1 dim: relaxation

Nucleation probability $P_{\text{nucleation}} = A \exp\left(-111\alpha_2 \frac{v^2}{m^2}\right)$

$$\tilde{\mathcal{E}} = \pi \tilde{R}^2 a + 2\pi \tilde{R} b + c.$$

We found a remnant energy *c* giving a correction to the thin-defect approx

Formation of chiral soliton lattice

a homogeneous state

nucleation of solitons

chiral soliton lattice

Negative energy(tension) soliton appears in various cond-mat, QCD

Solitonic ground state

We have proposed Quantum nucleation of such topological solitons

Classification of topological solitons: 3 types

d	Defects		Textures		Gauge Structure	
1	Domain wall, Kink	π_0	Sine-Gordon soliton	π_1		
2	Vortex, Cosmic string	π_1	Lumps, Baby Skyrmion	π_2		
3	Monopole	π_2	Skyrmion, Hopfion	π_3		
4					YM instanton	π_3
	$\partial R^d \cong S^{d-1} \to G/H$ $\pi_{d-1}(G/H) \neq 0$		$R^d + \{\infty\} = S^d \to G/H$		$\partial R^d \cong S^{d-1} \to G$	
			$\pi_d(G/H) \neq 0$		$\pi_{d-1}(G) \neq 0$	

d: codimensions (in which solitons are particles, or on which solitons depend)

Vortex, cosmic string (defect) $\pi_1(S^1) = \mathbb{Z} \neq 0$

Lump, baby Skyrmion (texture)

 $\pi_2(S^2) = \mathbb{Z} \neq \mathbb{0}$

Domain walls