Gauge Kinetic Mixing and Dark Topological Defects

Masahiro Ibe (ICRR) @ YU Workshop 2022/11/27

[JHEP 12 (2021) 122 : Takashi Hiramatsu, MI, Motoo Suzuki, Soma Yamaguchi]

Dark Photon (1983 Holdom ~)

✓ A simple extension of the SM with a massive "dark photon (γ')" that mixes with the QED (or $U(1)_Y$ gauge boson).

Recently, dark photon has attracted attention as it plays various roles in light dark matter models.

Typically : $m_{\gamma'} \ll \mathcal{O}(100) \text{GeV}$ $\epsilon \ll 1$

Origin of Dark Photon Mass?

 \checkmark A massive "dark photon (γ')" as a Stuckelberg vector boson?

$$\mathcal{L} = -\frac{1}{4} F'_{\mu\nu} F'^{\mu\nu} + \frac{1}{2} m_{\gamma'}^2 (A'_{\mu} - \partial_{\mu} \pi / m_{\gamma'})^2$$

Gauge symmetry : $A'_{\mu} \to A'_{\mu} + \partial_{\mu} \alpha \quad \pi \to \pi + m_{\gamma'} \alpha$

✓ Coupling to a Higgs boson : $\lambda_0 H^{\dagger} H X'_{\mu} X'^{\mu} \quad (X'^{\mu} = A'_{\mu} - \partial_{\mu} \pi / m_{\gamma'})$

 \rightarrow perturbative unitarity of $\gamma'\gamma' \rightarrow H^{\dagger}H$ is violated for

$$s^{1/2}\gtrsim \sqrt{rac{1}{\lambda_0}}m_{\gamma'}$$
 [see e.g. 2204.01755 Kribs et. al.]
(Longitudinal mode : $arepsilon_L^\mu\propto rac{\sqrt{s}}{m_{\gamma'}}$)

It seems more likely that the massive dark photon arises from spontaneous breaking of U(1) gauge symmetry.

What if U(1) gauge symmetry is embedded in SU(2)?

✓ Two-Step Spontaneous Symmetry Breaking (SU(2) breaking → U(1) breaking)

 $SU(2) \rightarrow U(1)$ by the VEV of the adjoint scalar

$$\langle \phi_1^a \rangle = v_1 \delta^{a3}$$

→ effective kinetic mixing is induced : $\epsilon = \frac{v_1}{\Lambda}$

Two-step SSB model is advantageous to explain tiny kinetic mixing.

✓ The possibility that the origin of dark photons is due to two-step SSB may be an interesting story.
 (*SU(2)* breaking scale ≫ *U(1)* breaking scale)

Topological Defects in two-step symmetry breaking?

✓ At $SU(2) \rightarrow U(1)$ Breaking

We expect "dark" Monopole as a topological defect.

The dark monopole sources dark magnetic field

[1974 t'Hooft, Polyakov]

We expect "dark" Cosmic Strings as a topological defect.

The dark magnetic field is confined along with the dark cosmic string.

[1973 Nielsen Olsen]

✓ At $SU(2) \rightarrow U(1) \rightarrow Z_2$ breaking (depending on how U(1) is broken) We expect "dark" bead solution as a topological defect.

The dark magnetic field from the magnetic monopole flows into the attached cosmic strings.

[1985 Hindmarsh & Kibble]

How do the defects in the dark sector look from the QED ?

Cosmic string for $\epsilon = 0$

✓ At U(1) breaking, cosmic strings can be formed [1973 Nielsen Olsen]

$$\begin{cases} \phi = vh(\rho)e^{in\varphi} ,\\ A'_i = -\frac{n}{g}\frac{\epsilon_{ij}x^j}{\rho^2}f(\rho) , \quad (i,j=1,2) , \end{cases} \begin{cases} h(\rho) \to 0 , \ (\rho \to 0) , \quad h(\rho) \to 1 , \ (\rho \to \infty) \\ f(\rho) \to 0 , \ (\rho \to 0) , \quad f(\rho) \to 1 , \ (\rho \to \infty) \end{cases}$$

U(1) symmetry is broken at $\rho \to \infty$

 \checkmark An isolated cosmic string is stable due to the topological charge :

 $\Pi_1(U(1)) = Z$

Cosmic string for $\epsilon = 0$

For
$$\rho \to \infty$$
 $\partial_{\varphi} \phi \to in \times v e^{in\varphi}$
 $D_{\varphi} \phi = (\partial_{\varphi} - igA_{\varphi})\phi \to 0$ (exponentially dumped)

Local string has a finite tension (= string weight per unit length)

$$\mathcal{E} = \int d^2x \left[\frac{1}{4} F_{ij} F^{ij} + |D_i \phi|^2 + V(\phi) \right] = 2\pi v^2 \times \mathcal{F}(2\lambda/g^2)$$

$$\left(\mathcal{F}(1) = 1 \quad \mathcal{F}'(x) < 0 \right)$$

✓ Dark Magnetic Flux inside the cosmic string

$$\int d^2 x B'_z = \oint_{\rho \to \infty} A'_i dx^i = \frac{2\pi n}{g}$$

Cosmic string for $\epsilon \neq 0$?

We are interested in a vacuum configuration $\rightarrow~J^{\mu}_{\rm QED}=0$

EOM is reduced to
$$\begin{cases} \partial F^{\mu\nu} = \epsilon \partial F'^{\mu\nu} \\ (1 - \epsilon^2) \partial_\mu F'^{\mu\nu} = g J_{\rm D}^\nu \\ J_{\rm D}^i = i \phi D_i \phi^\dagger - i \phi^\dagger D_i \phi = 2v^2 n \frac{\epsilon_{ij} x_j}{\rho^2} h^2 (f - 1) \end{cases}$$

 \checkmark The cosmic string solution for $\epsilon \neq 0$ is obtained by just rescaling

$$g_s = \frac{g}{\sqrt{1 - \epsilon^2}}$$
 $gA'_{\mu} = g_s A'_{s\mu}$ (EOM of ϕ is not changed)

Cosmic string for $\epsilon \neq 0$?

The magnetic flux of $F^{\mu\nu}$ is induced ($F^{\mu\nu} = \epsilon F'^{\mu\nu}$)

$$\oint A'_{s\mu}dx^{\mu} = \frac{2\pi n}{g_s} \quad \rightarrow \quad W_{\text{QED}} = \oint eA_{\mu}dx^{\mu} = \frac{g_s\epsilon e}{g} \oint A'_{s\mu}dx^{\mu} = \frac{2\pi n\epsilon e}{g}$$

 \checkmark For $\epsilon \neq 0$, dark string is associated with non-vanishing QED magnetic flux !

Around the dark cosmic string, a QED charged particle feels through the Aharonov-Bohm phase !

$$e^{iqW_{\text{QED}}}$$
 $qW_{\text{QED}} = \frac{2\pi nq\epsilon e}{g}$

Magnetic Monopole for $\epsilon = 0$

✓ At $SU(2) \rightarrow U(1)$ breaking, magnetic monopole can be formed [1974 t'Hooft, Polyakov]

$$\begin{cases} \phi^{a} = vH(r)\frac{x^{a}}{r}, \\ A_{i}^{\prime a} = \frac{1}{g}\frac{\epsilon^{aij}x^{j}}{r^{2}}F(r), \quad (i, j = 1, 2, 3) \end{cases} \begin{cases} H(r) \to 0, \ (r \to 0), \quad H(r) \to 1, \ (r \to \infty), \\ F(r) \to 0, \ (r \to 0), \quad F(r) \to 1, \ (r \to \infty). \end{cases}$$

SU(2) symmetry is broken down to U(1) at $r \to \infty$

An isolated magnetic monopole is stable due to the topological charge :

$$\Pi_2(SU(2)/U(1)) = Z$$

Magnetic Monopole for $\epsilon = 0$

Dark magnetic field around the dark monopole :

Effective $U(1)_D$ field strength : $\mathcal{F}'_{\mu\nu} \equiv \frac{1}{v} \phi^a F'^a_{\mu\nu}$,

$$\mathcal{F}'^{ij} = -\frac{1}{g} \frac{\epsilon^{ijk} x^k}{r^3} (2F - F^2) H , \quad (i, j = 1, 2, 3)$$

Dark magnetic charge :

$$Q'_M = \frac{1}{2} \int_{r \to \infty} dS_{ij} \mathcal{F}'^{ij} = -\frac{4\pi}{g}$$

✓ The Bianchi Identity of the effective $U(1)_D$ field strength

$$\partial_{\mu} \tilde{\mathcal{F}}^{\prime \mu \nu} = 0$$
 Is satisfied only at $r \gg (gv)^{-1}$

Dark magnetic monopole mass :

$$M_M = \frac{4\pi v}{g^2} \mathcal{F}_M(\lambda/g^2) \quad (\mathcal{F}_M(0) = 1 \quad \mathcal{F}'_M(x) > 0)$$

Magnetic Monopole for $\epsilon \neq 0$?

Equation of motion around the monopole :

QED field strength

Effective dark photon field strength

$$(\partial_{\mu}\tilde{\mathcal{F}}^{\prime\mu\nu}=0 \text{ only for } r\gg (gv)^{-1})$$

Nothing is induced to the QED sector...

dark magnetic monopole QED sector

QED satisfies the usual Bianchi identity → cannot have monopoles [see also arXiv:0902.3615 Brummer and Jaeckel]

Trivial vacuum configuration :

Step 1 : *SU(2)*
$$\rightarrow$$
 U(1) by $\langle \phi_1^a \rangle = v_1 \delta^{a3}$
 $\tilde{\phi} = \frac{1}{\sqrt{2}} \left(\phi_2^1 - i \phi_2^2 \right)$ has the *U(1)* charge 1

For $\kappa > 0$, $\phi_1 \cdot \phi_2 = 0$ direction is preferred :

Step 2 : $U(1) \rightarrow Z_2$ (center of *SU(2)*) by $\langle \phi_2^a \rangle = v_2 \delta^{a1}$

What happens to the monopole solution ?

Step 1 : Monopole solution at the energy scale v_1

Step 2 : U(1) breaking at the energy scale v_2

 $\phi_1 \cdot \phi_2 = 0$ & $|\phi_2| \rightarrow v_2$ at $r \rightarrow \infty$?

→ Such a configuration conflicts with the Hairy-ball theorem (on S², there is no tangent vector field with a constant magnitude)

U(1) symmetry restoration at some points on S²!

Consider "Combed" gauge

Hedgehog gauge

Northern hemisphere U_N

$$\begin{aligned} \phi_1^a \to \phi_N^a &= v \delta^{a3} \ , \\ A'^a \to A'^a_N &= \frac{1}{g} \delta^{a3} (\cos \theta - 1) d\varphi \\ U(1) \text{ is given by } A_N^{3\mu} \end{aligned}$$

At the equator $\theta \sim \pi/2$ $A_S^{\prime 3} = A_N^{\prime 3} + \frac{2}{g} d\varphi$.

Transition function of U(1) on S² at $\theta \sim \pi/2$ $t_{NS} = e^{2i\varphi}$
$$\begin{split} & & & & & & \\ & & & & \\ \phi_1^a \rightarrow \phi_S^a = v \delta^{a3} \ , \\ & & & A'^a \rightarrow A'^a_S = \frac{1}{g} \delta^{a3} (\cos \theta + 1) d\varphi \\ & & & & \\ & & & & \\ & &$$

Southern hemisphere U_S

 \checkmark Trivial ϕ_2^a configuration in the northern hemisphere $\tilde{\phi} = \frac{1}{\sqrt{2}}$

e
$$\tilde{\phi} = \frac{1}{\sqrt{2}}(\phi_2^1 + i\phi_2^2)$$

Trivial configuration in U_N

 $\tilde{\phi}_N = \frac{v_2}{\sqrt{2}}$ $A_{Ni}^{\prime 3} = 0$

Transited at the equator

Non trivial winding in U_{S}

$$\tilde{\phi}_S = e^{2i\varphi} \tilde{\phi}_N = e^{2i\varphi} \frac{v_2}{\sqrt{2}}$$
$$A'^3_{Si} dx^i = \frac{2}{g} d\varphi ,$$

,

✓ Trivial ϕ_2^a configuration in the northern hemisphere $\tilde{\phi} = \frac{1}{\sqrt{2}}(\phi_2^1 + i\phi_2^2)$

 $\sim (gv_2)^{-1}$

Cosmic string in the southern hemisphere has the winding number 2.

$$\tilde{\phi}_S \to e^{2i\varphi} \frac{v_2}{\sqrt{2}}$$

Dark magnetic flux of the magnetic monopole is confined in the half cosmic string

$$Q'_M = -\oint A^3_{S\varphi}d\varphi = -\frac{4\pi}{g}$$

This configuration is not stable. The monopole is pulled by the string.

18

✓ Cosmic string of ϕ_2^a configuration in the northern hemisphere

Cosmic string in U_N

(winding number -1)

Non trivial winding in U_S

$$\tilde{\phi}_S \to e^{2\varphi} \tilde{\phi}_N = \frac{v_2}{\sqrt{2}} e^{i\varphi} ,$$
$$A_{Si}^{\prime 3} dx^i \to A_{Ni}^{\prime 3} dx^i + \frac{2}{g} d\varphi = \frac{1}{g} d\varphi ,$$

(winding number +1)

Transited at

the equator

Cosmic string of ϕ_2^a configuration in the northern hemisphere

Monopole is attached by cosmic and anti-string

$$\tilde{\phi}_N \to e^{-i\varphi} \frac{v_2}{\sqrt{2}} \quad \text{in } U_N$$

 $\tilde{\phi}_S \to e^{i\varphi} \frac{v_2}{\sqrt{2}} \quad \text{in } U_S$

Dark magnetic flux of the magnetic monopole is confined in the two opposite cosmic strings

$$Q'_M = \oint A^3_{N\varphi} d\varphi - \oint A^3_{S\varphi} d\varphi = -\frac{4\pi}{g}$$

This configuration is stable !

bead solution ! [1985 Hindmarsh & Kibble]

$$\Pi_1(Z_2)=Z_2$$

 $\checkmark How \Pi_1(Z_2) = Z_2 \text{ is realized }?$

✓ String solution is equivalent with an anti-string solution

 String solution with even winding number is broken by pair creation of the monopole anti-monopole

Monopole-Anti-Monopole pair creation

 \checkmark What if U(1) is broken by a VEV of fundamental representation ?

 $SU(2) \rightarrow U(1) \rightarrow Nothing \rightarrow$ No stable soliton is expected

For
$$\rho \to \infty$$
 $\partial_{\varphi} \phi_F = in \times \frac{1}{\sqrt{2}} v_2 e^{in\varphi}$
 $D_{\varphi} \phi_F = \left(\partial_{\varphi} - \frac{1}{2}gA_{\varphi}\right) \phi_F \to 0$

Magnetic flux of is twice larger than the case of the adjoint scalar !

$$\int d^2 x B'_z = \oint_{\rho \to \infty} A'_i dx^i = \frac{4\pi n}{g}$$

Only unstable composite monopole-cosmic string can be formed !

Classical Lattice Simulation

Red points = Monopole

Green Lines = Cosmic Strings

Figure 6. Cosmic beads network, i.e., the necklace. The red and green surfaces are the isosurface of $|\phi_1| = 0.5v_1$ and $|\phi_2| = 0.06v_1$, respectively. The figure shows that the magnetic monopoles (or the beads) appearing as red points are connected by the cosmic strings.

Starting from random configuration (i.e., ~ thermalized configuration), we confirmed the formation of the beads network = necklace

✓ How does the necklace look like from QED sector ?

✓ How does the necklace look like from QED sector ?

 \checkmark Flux in string and anti-string :

$$\int_{S^2} F_{\text{QED}} = \epsilon Q'_M = -\epsilon \frac{4\pi}{g} ?$$

Bianchi identity of QED is satisfied "everywhere" in R³:

$$\int_{S^2} F_{\text{QED}} = 0 \quad !$$

QED magnetic flux needs to source out from the monopole !

How does the necklace look like from QED sector ?

Rough sketch of the QED magnetic flux (RED)

Due to the Bianchi identity of QED magnetic flux lines are not broken

$$\int_{S^2} F_{\text{QED}} = 0$$

- QED magnetic flux sources out from the monopole.
- It looks like a QED monopole from a distance !
- It is attached by the visible strings in which QED magnetic fields flow.
 - → Pseudo QED monopole

✓ Magnetic necklace

If the two step symmetry breaking takes place for $v_1 \gg v_2$, we expect a network of pseudo-magnetic monopole-network

Figure 5. A schematic picture of the magnetic necklace. The dark magnetic flux is trapped inside the necklace (the green line). In the presence of the kinetic mixing, the QED magnetic flux (the black lines) leaks out from the positions of the (anti-)monopole.

Classical Lattice Simulation

Stream lines around the mononoles

Classical Lattice Simulation

Stream lines around the monopoles

dark magnetic flux : converge to the monopole points

QED magnetic flux : flowing out or absorbed out

→We confirmed the formation of pseudo monopoles

Summary

Back UP

Cosmic string for $\epsilon \neq 0$ in canonical base

We can move to the canonical base (X_{μ}, X'_{μ}) by

$$A_{\mu} = X_{\mu} + \epsilon A'_{\mu} ,$$
$$A'_{\mu} = \frac{1}{\sqrt{1 - \epsilon^2}} X'_{\mu} .$$

In this basis, the EOM of X_{μ} and X'_{μ} decouple :

$$\begin{array}{l} \partial_{\mu}F_{X}^{\mu\nu} = eJ_{\text{QED}}^{\nu} \\ \partial_{\mu}\tilde{F}_{X}^{\mu\nu} = 0 \end{array} \end{array} \right\} \hspace{0.1cm} \text{QED field strength} \\ \\ \partial_{\mu}F_{X}^{\prime\mu\nu} = g_{s}J_{D}^{\nu} + \epsilon eJ_{\text{QED}}^{\nu} \\ \partial_{\mu}\tilde{F}_{X}^{\prime\mu\nu} = 0 \end{array} \right\} \hspace{0.1cm} \text{Dark photon field strength}$$

Cosmic string for $\epsilon \neq 0$ in canonical base

The magnetic flux of the dark string solution

$$\oint X'_{s\mu} dx^{\mu} = \frac{2\pi n}{g_s}$$

The AB phase the test QED charged particle (charge = q) feels

$$qW_{\rm QED} = \frac{q\epsilon e}{\sqrt{1-\epsilon^2}} \oint X'_{\mu} dx^{\mu} = \frac{2\pi n q\epsilon e}{g}$$

which is the same with the non-canonical basis analysis.

Combing gauge transformation

To comb the hedgehog, we use the gauge transformation in U_N and U_S

$$g_N = \begin{pmatrix} c_{\theta/2} & e^{-i\varphi}s_{\theta/2} \\ -e^{i\varphi}s_{\theta/2} & c_{\theta/2} \end{pmatrix}, \qquad g_S = \begin{pmatrix} e^{i\varphi}c_{\theta/2} & s_{\theta/2} \\ -s_{\theta/2} & e^{-i\varphi}c_{\theta/2} \end{pmatrix}$$

$$\phi^a \tau^a \to \phi^a_{N,S} \tau^a = g_{N,S} \phi^a \tau^a g^{\dagger}_{N,S} ,$$
$$A_i^{\prime a} \tau^a \to A_{N,S\,i}^{\prime a} \tau^a = g_{N,S} A_i^{\prime a} \tau^a g^{\dagger}_{N,S} - \frac{i}{g} (\partial_i g_{N,S}) g^{\dagger}_{N,S} ,$$

Bead solution in hedgehog gauge

The hedgehog chart is globally defined as an SU(2) theory

How does the bead solution look like in this gauge?

Combed gauge in northern hemisphere

Combed gauge in southern hemisphere

$$\tilde{\phi}_S \to e^{i\varphi} \frac{v_2}{\sqrt{2}}$$
$$A_{Si}^{\prime 3} dx^i \to \frac{1}{g} d\varphi$$

$$\begin{split} \phi_1^a &\to v_1(s_\theta c_\varphi, s_\theta s_\varphi, c_\theta) ,\\ \phi_2^a &\to v_2(c_\theta c_\varphi, c_\theta s_\varphi, -s_\theta) , \end{split} \qquad \begin{array}{l} A_r^{\prime a} \to 0 ,\\ A_\theta^{\prime a} &\to \frac{1}{g}(s_\varphi, -c_\varphi, 0) ,\\ A_\varphi^{\prime a} &\to \frac{1}{g}(0, 0, -1) . \end{split}$$