Gauge Kinetic Mixing and Dark Topological Defects

Masahiro Ibe (ICRR) @ YU Workshop 2022/11/27
[JHEP 12 (2021) 122 : Takashi Hiramatsu, MI, Motoo Suzuki, Soma Yamaguchi]

Dark Photon (1983 Holdom ~)

\checkmark A simple extension of the SM with a massive "dark photon $\left(\gamma^{\prime}\right)$ " that mixes with the QED (or $U(1)_{y}$ gauge boson).

$$
\mathcal{L}=-\frac{1}{4} F_{\mu \nu} F^{\mu \nu}-\frac{1}{4} F_{\mu \nu}^{\prime} F^{\prime \mu \nu}+\frac{\epsilon}{2} F_{\mu \nu} F^{\prime \mu \nu}+\frac{1}{2} m_{\gamma^{\prime}}^{2} A^{\mu} A_{\mu}^{\prime}+e A_{\mu} J_{\mathrm{QED}}^{\mu}+g A_{\mu}^{\prime} J_{\mathrm{DP}}^{\mu}
$$

In the canonical base, i.e, $\quad\left(A_{\mu}, A_{\mu}^{\prime}\right) \rightarrow\left(A_{\mu}+\epsilon A_{\mu}^{\prime}, A_{\mu}^{\prime}\right)$

only the "dark photon - QED current coupling" appears!

Recently, dark photon has attracted attention as it plays various roles in light dark matter models.

$$
\text { Typically : } \quad m_{\gamma^{\prime}} \ll \mathcal{O}(100) \mathrm{GeV} \quad \epsilon \ll 1
$$

Origin of Dark Photon Mass ?

\checkmark A massive "dark photon $\left(\gamma^{\prime}\right)$ " as a Stuckelberg vector boson?

$$
\begin{aligned}
& \mathcal{L}=-\frac{1}{4} F_{\mu \nu}^{\prime} F^{\prime \mu \nu}+\frac{1}{2} m_{\gamma^{\prime}}^{2}\left(A_{\mu}^{\prime}-\partial_{\mu} \pi / m_{\gamma^{\prime}}\right)^{2} \\
& \text { Gauge symmetry : } A_{\mu}^{\prime} \rightarrow A_{\mu}^{\prime}+\partial_{\mu} \alpha \quad \pi \rightarrow \pi+m_{\gamma^{\prime}} \alpha
\end{aligned}
$$

\checkmark Coupling to a Higgs boson: $\quad \lambda_{0} H^{\dagger} H X_{\mu}^{\prime} X^{\mu} \quad\left(X^{\prime \mu}=A_{\mu}^{\prime}-\partial_{\mu} \pi / m_{\gamma^{\prime}}\right)$
\rightarrow perturbative unitarity of $\gamma^{\prime} \gamma^{\prime} \rightarrow H^{\dagger} H$ is violated for

$$
\begin{aligned}
& s^{1 / 2} \gtrsim \sqrt{\frac{1}{\lambda_{0}}} m_{\gamma^{\prime}} \quad[\text { see e.g. 2204.01755 Kribs et. al.] } \\
& \left(\text { Longitudinal mode }: \varepsilon_{L}^{\mu} \propto \frac{\sqrt{s}}{m_{\gamma^{\prime}}}\right)
\end{aligned}
$$

, It seems more likely that the massive dark photon arises from spontaneous breaking of $U(1)$ gauge symmetry.

What if $U(1)$ gauge symmetry is embedded in $S U(2)$?

Two-Step Spontaneous Symmetry Breaking ($S U(2)$ breaking $\rightarrow U(1)$ breaking)

SU(2) gauge symmetry breaking

$$
\begin{array}{r}
\mathcal{L}_{\text {mix }}=- \\
-\frac{1}{4} F^{\mu \nu} F_{\mu \nu}-\frac{1}{4} F_{\mu \nu}^{\prime a} F^{\prime a \mu \nu}+\frac{\phi_{1}^{a}}{2 \Lambda} F_{\mu \nu}^{\prime a} F^{\mu \nu}+\frac{1}{2} D_{\mu} \phi_{1}^{a} D^{\mu} \phi_{1}^{a}-\frac{\lambda_{1}}{4}\left(\phi_{1} \cdot \phi_{1}-v_{1}^{2}\right) \\
\underline{\text { Photon Dark SU(2) Kinetic Mixing } \quad \text { SU(2) adjoint scalar } \phi_{1}^{a}(a=1,2,3)}
\end{array}
$$

$S U(2) \rightarrow U(1)$ by the VEV of the adjoint scalar

$$
\left\langle\phi_{1}^{a}\right\rangle=v_{1} \delta^{a 3}
$$

\rightarrow effective kinetic mixing is induced : $\epsilon=\frac{v_{1}}{\Lambda}$
Two-step SSB model is advantageous to explain tiny kinetic mixing.

The possibility that the origin of dark photons is due to two-step SSB may be an interesting story.
($S U(2)$ breaking scale $\gg U(1)$ breaking scale)

Topological Defects in two-step symmetry breaking?

\checkmark At $S U(2) \rightarrow U(1)$ Breaking
We expect "dark" Monopole as a topological defect.

The dark monopole sources dark magnetic field
[1974 t'Hooft, Polyakov]
\checkmark At $U(1)$ Breaking
We expect "dark" Cosmic Strings as a topological defect.

The dark magnetic field is confined along with the dark cosmic string.
\checkmark At $S U(2) \rightarrow U(1) \rightarrow Z_{2}$ breaking (depending on how $U(1)$ is broken) We expect "dark" bead solution as a topological defect.

The dark magnetic field from the magnetic monopole flows into the attached cosmic strings.

How do the defects in the dark sector look from the QED ?
Topological defects
in the dark sector
How do they look in QED?

Cosmic string for $\epsilon=0$

, At $U(1)$ breaking, cosmic strings can be formed [1973 Nielsen Olsen]

Width $\sim(g v)^{-1}\left(g^{2} \sim \lambda\right)$

$$
\left\{\begin{array} { l }
{ \phi = v h (\rho) e ^ { i n \varphi } , } \\
{ A _ { i } ^ { \prime } = - \frac { n } { g } \frac { \epsilon _ { i j } x ^ { j } } { \rho ^ { 2 } } f (\rho) , \quad (i , j = 1 , 2) , }
\end{array} \quad \left\{\begin{array}{ll}
h(\rho) \rightarrow 0,(\rho \rightarrow 0), & h(\rho) \rightarrow 1,(\rho \rightarrow \infty) \\
f(\rho) \rightarrow 0,(\rho \rightarrow 0), & f(\rho) \rightarrow 1,(\rho \rightarrow \infty)
\end{array}\right.\right.
$$

$$
U(1) \text { symmetry is broken at } \rho \rightarrow \infty
$$

\checkmark An isolated cosmic string is stable due to the topological charge :

$$
\Pi_{1}(U(1))=Z
$$

Cosmic string for $\epsilon=0$

$$
\text { For } \begin{array}{rlr}
\rho \rightarrow \infty & \partial_{\varphi} \phi & \rightarrow i n \times v e^{i n \varphi} \\
& D_{\varphi} \phi & =\left(\partial_{\varphi}-i g A_{\varphi}\right) \phi \rightarrow 0 \quad \text { (exponentially dumped) }
\end{array}
$$

\checkmark Local string has a finite tension (= string weight per unit length)

$$
\begin{aligned}
\mathcal{E}=\int d^{2} x\left[\frac{1}{4} F_{i j} F^{i j}+\left|D_{i} \phi\right|^{2}+V(\phi)\right] & =2 \pi v^{2} \times \mathcal{F}\left(2 \lambda / g^{2}\right) \\
& \left(\mathcal{F}(1)=1 \quad \mathcal{F}^{\prime}(x)<0\right)
\end{aligned}
$$

\checkmark Dark Magnetic Flux inside the cosmic string

$$
\int d^{2} x B_{z}^{\prime}=\oint_{\rho \rightarrow \infty} A_{i}^{\prime} d x^{i}=\frac{2 \pi n}{g}
$$

Cosmic string for $\epsilon \neq 0$?

\checkmark Equation of motion: $\left.\quad \partial_{\mu} F^{\mu \nu}-\epsilon \partial_{\mu} F^{\prime \mu \nu}=e J_{\mathrm{QED}}^{\nu},\right\}$

$$
\partial_{\mu} \tilde{F}^{\mu \nu}=0,
$$

$$
\left.\begin{array}{l}
\partial_{\mu} F^{\prime \mu \nu}-\epsilon \partial_{\mu} F^{\mu \nu}=g J_{\mathrm{D}}^{\nu}, \\
\partial_{\mu} \tilde{F}^{\prime \mu \nu}=0 .
\end{array}\right\} \text { Dark photon field strength }
$$

We are interested in a vacuum configuration $\rightarrow J_{\text {QED }}^{\mu}=0$

$$
\begin{aligned}
& \text { EOM is reduced to }\left\{\begin{array}{l}
\partial F^{\mu \nu}=\epsilon \partial F^{\prime \mu \nu} \\
\left(1-\epsilon^{2}\right) \partial_{\mu} F^{\prime \mu \nu}=g J_{\mathrm{D}}^{\nu}
\end{array}\right. \\
& \qquad J_{\mathrm{D}}^{i}=i \phi D_{i} \phi^{\dagger}-i \phi^{\dagger} D_{i} \phi=2 v^{2} n \frac{\epsilon_{i j} x_{j}}{\rho^{2}} h^{2}(f-1)
\end{aligned}
$$

\checkmark The cosmic string solution for $\epsilon \neq 0$ is obtained by just rescaling

$$
g_{s}=\frac{g}{\sqrt{1-\epsilon^{2}}} \quad g A_{\mu}^{\prime}=g_{s} A_{s \mu}^{\prime} \quad \text { (EOM of } \phi \text { is not changed) }
$$

Cosmic string for $\epsilon \neq 0$?

\checkmark The magnetic flux of $F^{\mu \nu}$ is induced $\left(F^{\mu \nu}=\epsilon F^{\mu \nu}\right)$

$$
\oint A_{s \mu}^{\prime} d x^{\mu}=\frac{2 \pi n}{g_{s}} \quad \rightarrow \quad W_{\mathrm{QED}}=\oint e A_{\mu} d x^{\mu}=\frac{g_{s} \epsilon e}{g} \oint A_{s \mu}^{\prime} d x^{\mu}=\frac{2 \pi n \epsilon e}{g}
$$

\checkmark For $\epsilon \neq 0$, dark string is associated with non-vanishing QED magnetic flux !

U(1) breaking
Dark Cosmic String

QED magnetic flux is Induced

A Around the dark cosmic string, a QED charged particle feels through the Aharonov-Bohm phase!

$$
e^{i q W_{\mathrm{QED}}} \quad q W_{\mathrm{QED}}=\frac{2 \pi n q \epsilon e}{g}
$$

Magnetic Monopole for $\epsilon=0$

\checkmark At $S U(2) \rightarrow U(1)$ breaking, magnetic monopole can be formed [1974 t'Hooft, Polyakov]

$$
V=\frac{\lambda}{4}\left(\phi^{a} \phi^{a}-v^{2}\right)^{2} \quad \text { (dark) magnetic monopole }
$$

$$
\left\{\begin{array}{l}
\phi^{a}=v H(r) \frac{x^{a}}{r}, \\
A_{i}^{\prime a}=\frac{1}{g} \frac{\epsilon^{a i j} x^{j}}{r^{2}} F(r), \quad(i, j=1,2,3)
\end{array}\right.
$$

$$
\begin{cases}H(r) \rightarrow 0,(r \rightarrow 0), & H(r) \rightarrow 1,(r \rightarrow \infty), \\ F(r) \rightarrow 0,(r \rightarrow 0), & F(r) \rightarrow 1,(r \rightarrow \infty) .\end{cases}
$$

$\mathrm{SU}(2)$ symmetry is broken down to $\mathrm{U}(1)$ at $r \rightarrow \infty$
\checkmark An isolated magnetic monopole is stable due to the topological charge :

$$
\Pi_{2}(S U(2) / U(1))=Z
$$

Magnetic Monopole for $\epsilon=0$

, Dark magnetic field around the dark monopole :
Effective $U(1)_{D}$ field strength: $\mathcal{F}_{\mu \nu}^{\prime} \equiv \frac{1}{v} \phi^{a} F_{\mu \nu}^{\prime a}$,

$$
\mathcal{F}^{\prime i j}=-\frac{1}{g} \frac{\epsilon^{i j k} x^{k}}{r^{3}}\left(2 F-F^{2}\right) H, \quad(i, j=1,2,3)
$$

\checkmark Dark magnetic charge :

$$
Q_{M}^{\prime}=\frac{1}{2} \int_{r \rightarrow \infty} d S_{i j} \mathcal{F}^{\prime i j}=-\frac{4 \pi}{g}
$$

\checkmark The Bianchi Identity of the effective $U(1)_{D}$ field strength

$$
\partial_{\mu} \tilde{\mathcal{F}}^{\prime \mu \nu}=0 \quad \text { Is satisfied only at } \quad r \gg(g v)^{-1}
$$

\checkmark Dark magnetic monopole mass :

$$
M_{M}=\frac{4 \pi v}{g^{2}} \mathcal{F}_{M}\left(\lambda / g^{2}\right) \quad\left(\mathcal{F}_{M}(0)=1 \quad \mathcal{F}_{M}^{\prime}(x)>0\right)
$$

Magnetic Monopole for $\epsilon \neq 0$?

\checkmark Equation of motion around the monopole :

\checkmark Nothing is induced to the QED sector...
dark magnetic monopole

QED satisfies the usual Bianchi identity \rightarrow cannot have monopoles [see also arXiv:0902.3615 Brummer and Jaeckel]

Bead solution for $\epsilon=0$

$U(1)$ breaking in a model with two $S U(2)$ adjoint scalars

$$
\begin{aligned}
& \qquad \begin{aligned}
& V=\frac{\lambda_{1}}{4}\left(\phi_{1} \cdot \phi_{1}-v_{1}^{2}\right)+\frac{\lambda_{2}}{4}\left(\phi_{2} \cdot \phi_{2}-v_{2}^{2}\right)+ \frac{\kappa}{2}\left(\phi_{1} \cdot \phi_{2}\right)^{2} \\
& \kappa>0
\end{aligned} \\
& \text { Hierarchical Breaking : } v_{1} \gg v_{2}
\end{aligned}
$$

Trivial vacuum configuration :
Step 1: $S U(2) \rightarrow U(1)$ by $\quad\left\langle\phi_{1}^{a}\right\rangle=v_{1} \delta^{a 3}$

$$
\tilde{\phi}=\frac{1}{\sqrt{2}}\left(\phi_{2}^{1}-i \phi_{2}^{2}\right) \quad \text { has the } U(1) \text { charge } 1
$$

For $\kappa>0, \phi_{1} \cdot \phi_{2}=0$ direction is preferred :
Step $2: U(1) \rightarrow Z_{2}$ (center of $S U(2)$) by $\left\langle\phi_{2}^{a}\right\rangle=v_{2} \delta^{a 1}$

Bead solution for $\epsilon=0$

\checkmark What happens to the monopole solution?
Step 1 : Monopole solution at the energy scale v_{1}

$$
\begin{gathered}
\phi_{1}^{a}=v_{1} H(r) \frac{x^{a}}{r} \\
\left|\phi_{1}(r \rightarrow \infty)\right| \rightarrow v_{1}
\end{gathered}
$$

Step $2: U(1)$ breaking at the energy scale v_{2}

$$
\phi_{1} \cdot \phi_{2}=0 \quad \& \& \quad\left|\phi_{2}\right| \rightarrow v_{2} \quad \text { at } r \rightarrow \infty ?
$$

\rightarrow Such a configuration conflicts with the Hairy-ball theorem (on S^{2}, there is no tangent vector field with a constant magnitude)

$$
\phi_{2}^{a}=0
$$

$U(1)$ symmetry restoration at some points on S^{2} !

Bead solution for $\epsilon=0$

\checkmark Consider "Combed" gauge
Hedgehog gauge

$$
\begin{aligned}
A_{r}^{\prime a} & \rightarrow 0 \\
A_{\theta}^{\prime a} & \rightarrow \frac{1}{g}\left(s_{\varphi},-c_{\varphi}, 0\right), \\
A_{\varphi}^{\prime a} & \rightarrow \frac{1}{g}\left(s_{\theta} c_{\theta} c_{\varphi}, s_{\theta} c_{\theta} s_{\varphi},-s_{\theta}^{2}\right),
\end{aligned}
$$

$$
\phi_{1}^{a} \rightarrow v\left(s_{\theta} c_{\varphi}, s_{\theta} s_{\varphi}, c_{\theta}\right),
$$

Northern hemisphere U_{N}

$$
\begin{aligned}
& \uparrow \uparrow \uparrow \uparrow \uparrow \uparrow \\
& \phi_{1}^{a} \rightarrow \phi_{N}^{a}=v \delta^{a 3}, \\
& A^{\prime a} \rightarrow A_{N}^{\prime a}=\frac{1}{g} \delta^{a 3}(\cos \theta-1) d \varphi
\end{aligned}
$$

$U(1)$ is given by $A_{N}^{3 \mu}$

Southern hemisphere U_{S}
At the equator $\theta \sim \pi / 2$

$$
A_{S}^{\prime 3}=A_{N}^{\prime 3}+\frac{2}{g} d \varphi
$$

Transition function of
$\mathrm{U}(1)$ on S^{2} at $\theta \sim \pi / 2$

$$
t_{N S}=e^{2 i \varphi}
$$

$$
\phi_{1}^{a} \rightarrow \phi_{S}^{a}=v \delta^{a 3}
$$

$$
A^{\prime a} \rightarrow A_{S}^{\prime a}=\frac{1}{g} \delta^{a 3}(\cos \theta+1) d \varphi
$$

$U(1)$ is given by $A_{S}^{3 \mu}$

Bead solution for $\epsilon=0$

Trivial ϕ_{2}^{a} configuration in the northern hemisphere $\tilde{\phi}=\frac{1}{\sqrt{2}}\left(\phi_{2}^{1}+i \phi_{2}^{2}\right)$

Northern hemisphere U_{N}

$$
\begin{aligned}
& \uparrow \uparrow \uparrow \uparrow \uparrow \\
& \phi_{1}^{a} \rightarrow \phi_{N}^{a}=v \delta^{a 3} \\
& A^{\prime a} \rightarrow A_{N}^{\prime a}=\frac{1}{g} \delta^{a 3}(\cos \theta-1) d \varphi
\end{aligned}
$$

$U(1)$ is given by $A_{N}^{3 \mu}$

Southern hemisphere U_{S}
At the equator $\theta \sim \pi / 2$

$$
A_{S}^{\prime 3}=A_{N}^{\prime 3}+\frac{2}{g} d \varphi .
$$

Transition function of
$\mathrm{U}(1)$ on S^{2} at $\theta \sim \pi / 2$ $t_{N S}=e^{2 i \varphi}$

Trivial configuration in U_{N}
$\tilde{\phi}_{N}=\frac{v_{2}}{\sqrt{2}}$
$A_{N i}^{\prime 3}=0$$\quad \xrightarrow{\begin{array}{l}\text { Transited at } \\ \text { the equator }\end{array}}$

Non trivial winding in U_{S}

$$
\begin{aligned}
& \tilde{\phi}_{S}=e^{2 i \varphi} \tilde{\phi}_{N}=e^{2 i \varphi} \frac{v_{2}}{\sqrt{2}}, \\
& A_{S i}^{\prime 3} d x^{i}=\frac{2}{g} d \varphi,
\end{aligned}
$$

Bead solution for $\epsilon=0$

Trivial ϕ_{2}^{a} configuration in the northern hemisphere $\tilde{\phi}=\frac{1}{\sqrt{2}}\left(\phi_{2}^{1}+i \phi_{2}^{2}\right)$

\checkmark Cosmic string in the southern hemisphere has the winding number 2.

$$
\tilde{\phi}_{S} \rightarrow e^{2 i \varphi} \frac{v_{2}}{\sqrt{2}}
$$

\checkmark Dark magnetic flux of the magnetic monopole is confined in the half cosmic string

$$
Q_{M}^{\prime}=-\oint A_{S \varphi}^{3} d \varphi=-\frac{4 \pi}{g}
$$

\checkmark This configuration is not stable. The monopole is pulled by the string.

Bead solution for $\epsilon=0$

Cosmic string of ϕ_{2}^{a} configuration in the northern hemisphere

Northern hemisphere U_{N}

$$
\begin{aligned}
& \uparrow \uparrow \uparrow \uparrow \uparrow \uparrow \\
& \phi_{1}^{a} \rightarrow \phi_{N}^{a}=v \delta^{a 3}, \\
& A^{\prime a} \rightarrow A_{N}^{\prime a}=\frac{1}{g} \delta^{a 3}(\cos \theta-1) d \varphi
\end{aligned}
$$

$U(1)$ is given by $A_{N}^{3 \mu}$

Southern hemisphere U_{S}
At the equator $\theta \sim \pi / 2$

$$
A_{S}^{\prime 3}=A_{N}^{\prime 3}+\frac{2}{g} d \varphi .
$$

Transition function of
$\mathrm{U}(1)$ on S^{2} at $\theta \sim \pi / 2$ $t_{N S}=e^{2 i \varphi}$

Cosmic string in U_{N}

$$
\begin{aligned}
& \tilde{\phi}_{N} \rightarrow e^{-i \varphi} \frac{v_{2}}{\sqrt{2}} \\
& A_{N i}^{\prime 3} d x^{i} \rightarrow-\frac{1}{g} d \varphi
\end{aligned}
$$

(winding number -1)

Non trivial winding in U_{s}

$$
\begin{aligned}
& \tilde{\phi}_{S} \rightarrow e^{2 \varphi} \tilde{\phi}_{N}=\frac{v_{2}}{\sqrt{2}} e^{i \varphi} \\
& A_{S i}^{\prime 3} d x^{i} \rightarrow A_{N i}^{\prime 3} d x^{i}+\frac{2}{g} d \varphi=\frac{1}{g} d \varphi,
\end{aligned}
$$

Transited at the equator
(winding number +1)

Bead solution for $\epsilon=0$

Cosmic string of ϕ_{2}^{a} configuration in the northern hemisphere

\checkmark Monopole is attached by cosmic and anti-string

$$
\begin{array}{ll}
\tilde{\phi}_{N} \rightarrow e^{-i \varphi} \frac{v_{2}}{\sqrt{2}} & \text { in } U_{N} \\
\tilde{\phi}_{S} \rightarrow e^{i \varphi} \frac{v_{2}}{\sqrt{2}} & \text { in } U_{S}
\end{array}
$$

, Dark magnetic flux of the magnetic monopole is confined in the two opposite cosmic strings

$$
Q_{M}^{\prime}=\oint A_{N \varphi}^{3} d \varphi-\oint A_{S \varphi}^{3} d \varphi=-\frac{4 \pi}{g}
$$

\checkmark This configuration is stable ! bead solution! [1985 Hindmarsh \& Kibble]

$$
\Pi_{1}\left(Z_{2}\right)=Z_{2}
$$

Bead solution for $\epsilon=0$

$\sqrt{ }$ How $\Pi_{1}\left(Z_{2}\right)=Z_{2}$ is realized?
\checkmark String solution is equivalent with an anti-string solution

Winding \# 1

\uparrow Moving monopole at
$\downarrow x_{3}=-\infty$ to $x_{3}=\infty$.
\checkmark String solution with even winding number is broken by pair creation of the monopole anti-monopole

Monopole-Anti-Monopole pair creation

Bead solution for $\epsilon=0$

\checkmark What if $U(1)$ is broken by a VEV of fundamental representation?

$$
S U(2) \rightarrow U(1) \rightarrow \text { Nothing } \rightarrow \text { No stable soliton is expected }
$$

$$
\text { For } \begin{aligned}
\rho \rightarrow \infty & \partial_{\varphi} \phi_{F}
\end{aligned}=\text { in } \times \frac{1}{\sqrt{2}} v_{2} e^{i n \varphi}, ~=\left(\partial_{\varphi}-\frac{1}{2} g A_{\varphi}\right) \phi_{F} \rightarrow 0
$$

Magnetic flux of is twice larger than the case of the adjoint scalar!

$$
\int d^{2} x B_{z}^{\prime}=\oint_{\rho \rightarrow \infty} A_{i}^{\prime} d x^{i}=\frac{4 \pi n}{g}
$$

Only unstable composite monopole-cosmic string can be formed!

Bead solution for $\epsilon=0$

\checkmark Classical Lattice Simulation

v_{2} / v_{1}	0.3
λ_{10}	1
λ_{20}	1
κ_{0}	2
ϵ	0.2
g	$1 / \sqrt{2}$

Red points = Monopole

Green Lines
= Cosmic Strings

Figure 6. Cosmic beads network, i.e., the necklace. The red and green surfaces are the isosurface of $\left|\phi_{1}\right|=0.5 v_{1}$ and $\left|\phi_{2}\right|=0.06 v_{1}$, respectively. The figure shows that the magnetic monopoles (or the beads) appearing as red points are connected by the cosmic strings.

Starting from random configuration (i.e., ~ thermalized configuration), we confirmed the formation of the beads network = necklace

Bead solution for $\epsilon \neq 0$?

\checkmark How does the necklace look like from QED sector ?

Bead solution for $\epsilon \neq 0$?

$\sqrt{ }$ How does the necklace look like from QED sector?
\checkmark Flux in string and anti-string :

$$
\int_{S^{2}} F_{\mathrm{QED}}=\epsilon Q_{M}^{\prime}=-\epsilon \frac{4 \pi}{g} ?
$$

\checkmark Bianchi identity of QED is satisfied "everywhere" in R3:

$$
\int_{S^{2}} F_{\mathrm{QED}}=0 \quad!
$$

\checkmark QED magnetic flux needs to source out from the monopole!

Bead solution for $\epsilon \neq 0$?

$\sqrt{ }$ How does the necklace look like from QED sector?

Rough sketch of the

 QED magnetic flux (RED)
\checkmark Due to the Bianchi identity of QED magnetic flux lines are not broken

$$
\int_{S^{2}} F_{\mathrm{QED}}=0
$$

\checkmark QED magnetic flux sources out from the monopole.
\checkmark It looks like a QED monopole from a distance !
\checkmark It is attached by the visible strings in which QED magnetic fields flow.
\rightarrow Pseudo QED monopole

Bead solution for $\epsilon \neq 0$?

, Magnetic necklace
If the two step symmetry breaking takes place for $\mathrm{v}_{1} \gg \mathrm{v}_{2}$, we expect a network of pseudo-magnetic monopole-network

Figure 5. A schematic picture of the magnetic necklace. The dark magnetic flux is trapped inside the necklace (the green line). In the presence of the kinetic mixing, the QED magnetic flux (the black lines) leaks out from the positions of the (anti-)monopole.

Classical Lattice Simulation

Stream lines around the monopoles

Then, we solve vector flow

$$
\frac{d \boldsymbol{x}_{s}}{d \zeta}=\boldsymbol{B}_{i}^{(\mathrm{eff})}\left(\boldsymbol{x}_{s}(\zeta)\right)
$$

Classical Lattice Simulation

Stream lines around the monopoles

dark magnetic flux

QED magnetic flux
\checkmark dark magnetic flux : converge to the monopole points
\checkmark QED magnetic flux : flowing out or absorbed out
\rightarrow We confirmed the formation of pseudo monopoles

Summary

Topological defects
in the dark sector
Through
How do they look in QED ?
$S U(2) \rightarrow U(1)$
Dark Magnetic Monopole Kinetic Mixing

$$
\begin{aligned}
& \text { U(1) breaking } \\
& \text { Dark Cosmic String }
\end{aligned}
$$

Back UP

Cosmic string for $\epsilon \neq 0$ in canonical base

We can move to the canonical base $\left(X_{\mu}, X_{\mu}^{\prime}\right)$ by

$$
\begin{aligned}
A_{\mu} & =X_{\mu}+\epsilon A_{\mu}^{\prime} \\
A_{\mu}^{\prime} & =\frac{1}{\sqrt{1-\epsilon^{2}}} X_{\mu}^{\prime} .
\end{aligned}
$$

In this basis, the EOM of X_{μ} and X_{μ}^{\prime} decouple :

$$
\left.\begin{array}{l}
\partial_{\mu} F_{X}^{\mu \nu}=e J_{\mathrm{QED}}^{\nu} \\
\partial_{\mu} \tilde{F}_{X}^{\mu \nu}=0 \\
\partial_{\mu} F_{X}^{\prime \mu \nu}=g_{s} J_{D}^{\nu}+\epsilon e J_{\mathrm{QED}}^{\nu} \\
\partial_{\mu} \tilde{F}_{X}^{\prime \mu \nu}=0
\end{array}\right\} \text { QED field strength }
$$

Cosmic string for $\epsilon \neq 0$ in canonical base

The magnetic flux of the dark string solution

$$
\oint X_{s \mu}^{\prime} d x^{\mu}=\frac{2 \pi n}{g_{s}}
$$

The AB phase the test QED charged particle (charge $=q$) feels

$$
q W_{\mathrm{QED}}=\frac{q \epsilon e}{\sqrt{1-\epsilon^{2}}} \oint X_{\mu}^{\prime} d x^{\mu}=\frac{2 \pi n q \epsilon e}{g}
$$

which is the same with the non-canonical basis analysis.

Combing gauge transformation

To comb the hedgehog, we use the gauge transformation in U_{N} and U_{S}

$$
\begin{aligned}
g_{N}= & \left(\begin{array}{cc}
c_{\theta / 2} & e^{-i \varphi} s_{\theta / 2} \\
-e^{i \varphi} s_{\theta / 2} & c_{\theta / 2}
\end{array}\right), \quad g_{S}=\left(\begin{array}{cc}
e^{i \varphi} c_{\theta / 2} & s_{\theta / 2} \\
-s_{\theta / 2} & e^{-i \varphi} c_{\theta / 2}
\end{array}\right) \\
& \phi^{a} \tau^{a} \rightarrow \phi_{N, S}^{a} \tau^{a}=g_{N, S} \phi^{a} \tau^{a} g_{N, S}^{\dagger}, \\
& A_{i}^{\prime a} \tau^{a} \rightarrow A_{N, S i}^{\prime a} \tau^{a}=g_{N, S} A_{i}^{a} \tau^{a} g_{N, S}^{\dagger}-\frac{i}{g}\left(\partial_{i} g_{N, S}\right) g_{N, S}^{\dagger}
\end{aligned}
$$

Bead solution in hedgehog gauge

The hedgehog chart is globally defined as an $\operatorname{SU}(2)$ theory
How does the bead solution look like in this gauge ?

Combed gauge in northern hemisphere

$$
\begin{aligned}
& \tilde{\phi}_{N} \rightarrow e^{-i \varphi} \frac{v_{2}}{\sqrt{2}} \\
& A_{N i}^{\prime 3} d x^{i} \rightarrow-\frac{1}{g} d \varphi
\end{aligned}
$$

Combed gauge in southern hemisphere

$$
\begin{gathered}
\tilde{\phi}_{S} \rightarrow e^{i \varphi} \frac{v_{2}}{\sqrt{2}} \\
A_{S i}^{\prime 3} d x^{i} \rightarrow \frac{1}{g} d \varphi
\end{gathered}
$$

$$
\phi_{1}^{a} \rightarrow v_{1}\left(s_{\theta} c_{\varphi}, s_{\theta} s_{\varphi}, c_{\theta}\right)
$$

$$
\phi_{2}^{a} \rightarrow v_{2}\left(c_{\theta} c_{\varphi}, c_{\theta} s_{\varphi},-s_{\theta}\right)
$$

$$
\begin{aligned}
A_{r}^{\prime a} & \rightarrow 0 \\
A_{\theta}^{\prime a} & \rightarrow \frac{1}{g}\left(s_{\varphi},-c_{\varphi}, 0\right) \\
A_{\varphi}^{\prime a} & \rightarrow \frac{1}{g}(0,0,-1)
\end{aligned}
$$

